Improving the quality of parts manufactured by fused deposition 3D printing through efficient adjustment of printing parameters: a review

Yoloxóchitl Adela Torres Carrillo, Alfredo Toriz Palacios


Additive manufacturing or 3D printing has gained importance in recent years for the manufacture of functional prototypes, part of this boom is due to the speed of manufacturing from the design to the finished part, meaning a saving in time and its corresponding monetary, however, for the use of the manufactured parts as part of a functional design it is required that each part produced to be a quality part, and this is repeated in each print of the same type. In order to achieve the objective of improving the quality of parts manufactured by this methodology, a review of the existing literature has been carried out, allowing us to propose the pending work in the area and the possible lines of research to follow in order to make more efficient the obtaining of the adequate printing parameters for each part.


3D printing, additive manufacturing, fused deposition model, printing parameter

Full Text:



Sánchez, N. y Lira, I. (2020) La Manufactura aditiva como potencializador de los sistemas productivos. Inventum, vol. 15, No. 28, 2 - 13.

doi: 10.26620/uniminuto.inventum.15.28.2020. 104-112.

Huang, Y., Leu, M.C., Mazumder, J., Donmez A. 2015. Additive manufacturing: current state, future potencial, gaps and needs, and recommendations. Journal of Manufacturing Science and Engineering-Transactions of the ASME, 137(1), 014001-1–014001-10.

Yang, S., Zhao, Y.F. Additive manufacturing-enabled design theory and methodology: a critical review. Int J Adv Manuf Technol 80, 327–342 (2015). doi: 10.1007/s00170-015-6994-5

Garg A, Lam JSL, Savalani MM. 2015. A new computational intelligence approach in formulation of functional relationship of open porosity of the additive manufacturing process. International Journal of Advanced Manufacturing Technology, 80(1–4), 555–565.

Guessasma S, Zhang W, Zhu J, Belhabib S & Nouri H: Challenges of additive manufacturing technologies from an optimisation perspective. Int. J. Simul. Multisci. Des. Optim., 2015, 6, A9. doi: 10.1051/smdo/2016001

Li S, Yuan S, Zhu J, Wang C, Li J, Zhang W, Additive Manufacturing-driven Design Optimization: Building Direction and Structural Topology, Additive Manufacturing (2020), doi: 10.1016/j.addma.2020.101406

Redwood, B., Filemon Schöffer, & Garret, B. (2018). The 3D printing handbook : technologies, design and applications. Amsterdam, The Netherlands: 3D Hubs B.V.

Carvajal, M.J. et al. (2019) Influencia de la posición de impresión y la densidad de relleno en las propiedades mecánicas de probetas fabricadas en ABS. Revista ingenierias Universidad de Medellin, 19(37) 179-193

Chee Kai Chua, Chee How Wong, & Wai Yee Yeong. (2017). Standards, quality control, and measurement sciences in 3D printing and additive manufacturing. London ; San Diego, Ca: Academic Press, An Imprint Of Elsevier.

L. Li, Q. Sun, C. Bellehumeur, P. Gu, (2002) Composite modeling and analysis for fabrication of FDM prototypes with locally controlled properties, J. Manuf. Process. 4 (2) 129–141.

C. Casavola, A. Cazzato, V. Moramarco, C. Pappalettere, (2016) Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory, Mater. Des. 90 453–458.

M. Somireddy, C.V. Singh, A. Czekanski, (2019) Analysis of the material behavior of 3D printed laminates via FFF, Exp. Mech. 59 (6) 871–881.

S. Bhandari, R.A. Lopez-Anido, L. Wang, D.J. Gardner, (2020) Elasto-plastic finite element modeling of short carbon fiber reinforced 3D printed acrylonitrile butadiene styrene composites, JOM 72 (1) (2020) 475–484,

Y. Zhao, Y. Chen, Y. Zhou, (2019) Novel mechanical models of tensile strength and elastic property of FDM AM PLA materials: experimental and theoretical analyses, Mater. Des. 181.

P.K. Mishra, P. Senthil, (2020) Prediction of in-plane stiffness of multi-material 3D printed laminate parts fabricated by FDM process using CLT and its mechanical behaviour under tensile load, Mater. Today Commun. 23.

Yadav, D., Chhabra, D., Kumar Garg, R., Ahlawat, A., & Phogat, A. (2019). Optimization of FDM 3D printing process parameters for multi-material using artificial neural network. Materials Today: Proceedings. doi:10.1016/j.matpr.2019.11.225

Deswal, S., Narang, R., & Chhabra, D. (2019). Modeling and parametric optimization of FDM 3D printing process using hybrid techniques for enhancing dimensional preciseness. International Journal on Interactive Design and Manufacturing (IJIDeM). doi:10.1007/s12008-019-00536-z

Sri-Amphorn, P., Abeykoon, C., & Fernando, A. (2020). Optimization of Fused Deposition Modeling Parameters for Improved PLA and ABS 3D Printed Structures. International Journal of Lightweight Materials and Manufacture. doi:10.1016/j.ijlmm.2020.03.003

Nidagundi, V. B., Keshavamurthy, R., & Prakash, C. P. S. (2015). Studies on Parametric Optimization for Fused Deposition Modelling Process. Materials Today: Proceedings, 2(4-5), 1691–1699. doi:10.1016/j.matpr.2015.07.097

Dey, A., & Yodo, N. (2019). A Systematic Survey of FDM Process Parameter Optimization and Their Influence on Part Characteristics. Journal of Manufacturing and Materials Processing, 3(3), 64.

Jaisingh Sheoran, A., & Kumar, H. (2019). Fused Deposition modeling process parameters optimization and effect on mechanical properties and part quality: Review and reflection on present research. Materials Today: Proceedings. doi:10.1016/j.matpr.2019.11.296

Carlier, E., Marquette, S., Peerboom, C., Denis, L., Benali, S., Raquez, J.-M., … Goole, J. (2019). Investigation of the parameters used in fused deposition modeling of polylactic acid) to optimize 3D printing sessions. International Journal of Pharmaceutics, 565, 367–377. doi:10.1016/j.ijpharm.2019.05.008

Sampieri, R. H., Collado, C. F., & del Pilar Baptista Lucio, M. (2010). Metodología de la investigación (5th ed.). New York, NY: McGraw-Hill.


  • There are currently no refbacks.