Optimización teórica de sistema electromecánico para obtención de fase para un interferómetro de trayectoria común

Alejandro Javier Bravo Parra, Antonio Barcelata Pinzón, Ricardo Iván Álvarez Tamayo

Abstract


En este trabajo se propone una optimización mecánica para generar corrimientos de fase igualmente espaciados para la extracción de la diferencia de fase existente entre una referencia y un objeto de prueba en un interferómetro de trayectoria común de doble apertura. Se muestran los cálculos de un sistema mecánico de engranajes el cual se diseñó para incrementar la precisión y control de la traslación transversal de una rejilla de difracción a fin de obtener desplazamientos equidistantes. Se muestran cálculos analíticos y simulaciones.


Keywords


Diseño mecánico, interferómetro de trayectoria común, corrimiento de fase

Full Text:

PDF (SPANISH)

References


Sabella R, Iovanna P, Bottari G, Cavaliere F. Optical transport for Industry 4.0. J Opt Commun Netw. 2020;12(8):264-276. doi:10.1364/JOCN.390701

Bally G von, Schmidthaus W, Sakowski H, Mette. W. Gradient-index optical systems in holographic endoscopy. Appl Opt. 1984;23(11):1725.

Liang H, Peric B, Hughes M, Podoleanu AG, Spring M, Roehrs S.

Optical Coherence Tomography in archaeological and conservation science - a new emerging field. 1st Canterbury Work Opt Coherence Tomogr Adapt Opt. 2008;7139:1-9. doi:10.1117/12.819499

Norgia M, Donati S. A Displacement-Measuring Instrument Utilizing Self-Mixing Interferometry. IEEE Trans Instrum Meas. 2003;52(6):1765-1770. doi:10.1109/TIM.2003.820451

Kholkin AL, Wütchrich C, Taylor D V., Setter N. Interferometric measurements of electric field-induced displacements in piezoelectric thin films. Rev Sci Instrum. 1996;67(5):1935-1941. doi:10.1063/1.1147000

Shakher C, Nirala AK. Measurement of temperature using speckle shearing interferometry. Appl Opt. 1994;33(11):2125-2127.

Sharma S, Sheoran G, Shakher C. Digital holographic interferometry for measurement of temperature in axisymmetric flames. Appl Opt. 2012;51(16):3228-3235. doi:10.1364/AO.51.003228

Mee R, Dontsov D, Langlotz E. Interferometric device for the in-process measurement of diameter variation in the manufacture of ultraprecise spheres. Meas Sci Technol. 2021;32(7). doi:10.1088/1361-6501/abe81c

Kohno T, Matsumoto D, Yazawa T, Uda Y. Radial shearing interferometer for in-process measurement of diamond turning. OptEng. 2000;42:701-707.

Meneses-Fabian C, Rodriguez-Zurita G, Vazquez-Castillo JF, Robledo-Sanchez C, Arrizón V. Common-path phase-shifting interferometer with binary grating. Opt Commun. 2006;264(1):13-17. doi:10.1016/j.optcom.2006.02.024

Meneses-Fabian C, Rodriguez-Zurita G, Arrizón V. Optical tomography of transparent objects with phase-shifting interferometry and stepwise-shifted Ronchi ruling. J Opt Soc Am A. 2006;23(2):298. doi:10.1364/josaa.23.000298

Mico V, Zalevsky Z, García J. Superresolution optical system by common-path interferometry. Opt Express. 2006;14(12):5168. doi:10.1364/OE.14.005168

Bruno L, Poggialini A, Felice G. Design and calibration of a piezoelectric actuator for interferometric applications. Opt Lasers Eng. 2007;45(12):1148-1156. doi:10.1016/j.optlaseng.2007.06.004

Sokkar TZN, El-Farahaty KA, El-Bakary MA, Omar EZ, Hamza AA. Optical birefringence and molecular orientation of crazed fibres utilizing the phase shifting interferometric technique. Opt Laser Technol. 2017;94:208-216. doi:10.1016/j.optlastec.2017.03.037

Nguyen TD, Duong QA, Higuchi M, Vu TT, Wei D, Aketagawa M. 19-Picometer Mechanical Step Displacement Measurement Using Heterodyne Interferometer With Phase-Locked Loop and Piezoelectric Driving Flexure-Stage. Sensors Actuators, A Phys. 2020;304:111880. doi:10.1016/j.sna.2020.111880

Barcelata-Pinzon A, Meneses-Fabian C, Moreno-Alvarez L, Pastrana-Sanchez R. Common-path speckle interferometer for phase objects studies. Opt Commun. 2013;304(1):153-157. doi:10.1016/j.optcom.2013.04.066

Arrizón V, Sánchez-de-la-Llave D. Common-path interferometry with one-dimensional periodic filters. Opt Lett. 2004;29(2):141. doi:10.1364/ol.29.000141

Takeda M, Ina H, Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. 1982;72(1):156-160.

Creath K. Phase-shifting speckle interferometry. Appl Opt. 1985;24(18):3053. doi:10.1364/ao.24.003053

Gomez-Conde JC, Meneses-Fabian C. Real-time phase step measurement using the volume enclosed by a surface algorithm in self-calibrating phase-shifting interferometry. Meas J Int Meas Confed. 2020;153(December):107412. doi:10.1016/j.measurement.2019.107412

Gomez-Conde JC, Meneses-Fabian C. Real-time measurements of phase steps out-of-range (0,2π) by a dynamic self-calibrating generalized phase-shifting algorithm. Opt Lasers Eng. 2021;140(May):106543. doi:10.1016/j.optlaseng.2021.106543

Meneses-Fabian C. Self-calibrating generalized phase-shifting interferometry of three phase-steps based on geometric concept of volume enclosed by a surface. J Opt (United Kingdom). 2016;18(12). doi:10.1088/2040-8978/18/12/125703

Barcelata-Pinzon A, Alvarez-Tamayo RI, Prieto-Cortés P. A Real-Time Automated System for Dual-Aperture Common-Path Interferometer Phase-Shifting. Appl Sci. 2021;11:1-10.

Li M, Liang R, Zhang Y, Peng C, Mu D, Wan Z. On-line measurement method of transmission backlash based on angular velocity and double-end angular position information. Meas Control (United Kingdom). 2021;54(1-2):65-72. doi:10.1177/0020294020973252


Refbacks

  • There are currently no refbacks.